Wasserlösliche Phosphane

II *. Ein neuer Syntheseweg für wasserlösliche sekundäre und tertiäre Phosphane mit sulfonierten aromatischen Resten – Kristallstruktur von P(p-C₆H₄-SO₃K)₃·KCl·0.5H₂O

Oliver Herd, Antonella Heßler, Klaus P. Langhans und Othmar Stelzer

Fachbereich 9, Anorganische Chemie, Bergische Universität-GH Wuppertal, Gaußstr. 20, D-42097 Wuppertal (Deutschland)

William S. Sheldrick

Lehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum (Deutschland)

Norbert Weferling

Hoechst AG, Werk Knapsack, D-50351 Hürth (Deutschland) (Eingegangen den 14. Januar 1994)

Abstract

Water soluble tertiary phosphanes 2, 7, 10–17 with sulfonated aromatic substituents $p-C_6H_4$ -SO₃K and 2,4- C_6H_3 (SO₃K)₂ can be obtained in good yields by nucleophilic aromatic substitution of fluorine in p-F- C_6H_4 -SO₃K (1) or F- C_6H_3 -2,4-(SO₃K)₂ (5) with PH₃ or primary and secondary phosphanes in the superbasic medium dimethyl sulfoxide (DMSO)/KOH(solid). The first water-soluble secondary phosphane HP[C₆H₃-2,4-(SO₃K)₂]₂ (6) having sulfonated aromatic substituents can be obtained if 5 is reacted under similar conditions with PH₃. Highly sulfonated phosphanes (7–9) with remarkable solubilities in water are formed upon reaction of 6 with F-C₆H₅, ⁿBuBr or C₆H₅-CH₂-Br, respectively, in the superbasic medium. The resulting compounds have been identified by their ¹H, ¹³C{¹H} and ³¹P{¹H} NMR spectra. X-Ray structural analysis of P(p-C₆H₄-SO₃K)₃·KCl·0.5H₂O shows C₃ symmetry for the trianion of 2 with the P-C-P bond angles (103.5(2)°) and P-C bond lengths (1.843(4) Å) being almost identical to those in Ph₃P.

Zusammenfassung

Wasserlösliche Phosphane 2, 7, 10–17 mit sulfonierten aromatischen Resten $p-C_6H_4$ -SO₃K und 2,4- $C_6H_3(SO_3K)_2$ lassen sich durch nucleophile Substitution des Fluors in p-F- C_6H_4 -SO₃K (1) oder F- C_6H_3 -2,4- $(SO_3K)_2$ (5) mit PH₃, primären oder sekundären Phosphanen im superbasischen Medium Dimethylsulfoxid (DMSO)/KOH(fest) in guten Ausbeuten darstellen. Durch Umsetzung von 5 mit PH₃ in DMSO/KOH gelangt man zu HP[C_6H_3 -2,4- $(SO_3K)_2$]₂ (6), dem ersten wasserlöslichen sekundären Phosphan mit sulfonierten aromatischen Substituenten. Die Reaktion von 6 mit F- C_6H_5 , ⁿBuBr oder C_6H_5 -CH₂-Br führt zu hochsulfonierten Phosphanen (7–9) mit ungewöhnlich hoher Löslichkeit in H₂O. Die Verbindungen wurden ¹H-, ¹³C[¹H]- und ³¹P[¹H]-NMR-spektroskopisch charakterisiert. Nach dem Ergebnis der Röntgenstrukturanalyse an P(p- C_6H_4 -SO₃K)₃·KCl· 0.5H₂O besitzt das Trianion [P(p- C_6H_4 -SO₃)₃]³⁻ C₃-Symmetrie. P-C-P-Bindungswinkel (103.5(2)°) und P-C Bindungslängen (1.843(4) Å) in 2 sind mit denen in Ph₃P nahezu identisch.

Key words: Phosphine; Catalysis; Nuclear magnetic resonance; Water soluble phosphine; Phase transfer; Hydroformylation

Correspondence to: Prof. Dr. O. Stelzer.

^{*} I. Mitteilung siehe Lit. [1].

1. Einleitung

Wasserlösliche Komplexe ionischer Phosphanliganden haben in den letzten Jahren als Katalysatoren für die Synthese organischer Verbindungen im technischen und Laboratoriumsmaßstab zunehmend an Bedeutung gewonnen [2a,2b]. Bei Durchführung der Reaktionen in Zweiphasensystemen organisches Lösungsmittel/ Wasser kann der wasserlösliche Katalysator auf einfache Weise durch Extraktion von Substrat und Produkt abgetrennt werden. Als Katalysatoren für Hydroformylierungs- [2,3] und Hydrierungsreaktionen [4-6] in Zweiphasensystemen werden bevorzugt Rh^I-Komplexe der sulfonierten Derivate des Triphenylphosphans, z.B. P(m-C₆H₄-SO₃Na)₃ (TPPTS) [2,7a], eingesetzt. Die Synthese des TPPTS [2b,7a] und des seit längerer Zeit bekannten Ph2P-m-C6H4SO3Na (TP-PMS) [7b] gelingt durch Direktsulfonierung von Ph₃P mit Oleum. In analoger Weise lassen sich wasserlösliche zweizähnige chirale Phosphane wie CYCLOBUTAN-DIOP (I) oder CHIRAPHOS (II) darstellen [8]. Dieses Verfahren ist jedoch nur wenig selektiv und liefert Produkte unterschiedlichen Sulfonierungsgrads sowie Phosphanoxide und Phosphansulfide. Die Isolierung einheitlicher Produkte aus den Reaktionsgemischen erfordert aufwendige Trennoperationen [9].

Als synthetische Alternative bot sich die nucleophile Substitution des Halogens in sulfoniertem Chlorbenzol durch Alkalimetallorganophosphide an (Gl. (1)). Diese Reaktion ist jedoch, wie die Umsetzung des Na-Salzes der 4-Chlorbenzolsulfonsäure mit Ph₂PK bei 160– 180°C zeigte, von der nucleophilen Verdrängung der Sulfonsäuregruppierung begleitet [10] (Gl. (2)).

Cl-SO₃Na
$$\xrightarrow{n + 1 - KCl}$$
 Ph₂P-SO₃Na (1)
-KCl - SO₃Na $\xrightarrow{n + 1 - KCl}$ Ph₂P-Ph₂ (2)

Die Fluoratome der elektronenarmen Fluoraromaten und -heteroaromaten $C_6H_{6-n}F_n$ bzw. 2,6- $C_5H_3F_2N$ lassen sich dagegen bereits unter sehr milden Bedingungen durch die stark nucleophilen Phosphidanionen in MPR₂ (M = Na, K; R = Ph) vollständig substituieren (Gl. (3)). Dabei erhält man die tertiären aromatischen Phosphane $C_6H_{6-n}(PR_2)_n$ bzw. 2,6- $C_5H_3N(PR_2)_n$ in guten Ausbeuten [11].

$$n \operatorname{Ph}_2 \operatorname{PNa} + \operatorname{C}_6 \operatorname{H}_{6-n} \operatorname{F}_n \xrightarrow{\text{fl. NH}_3} \operatorname{C}_6 \operatorname{H}_{6-n} (\operatorname{PPh}_2)_n$$
(3)

Es war daher zu erwarten, daß auch die sulfonierten Derivate der Fluoraromaten, wie z.B. 4-F-C₆H₄-SO₃K oder F-C₆H₃-2,4-(SO₃K)₂, nucleophilen Substitutionsreaktionen dieses Typs zugänglich waren.

In Fortführung eigener Arbeiten [12–14] sollten dabei jedoch anstelle der Alkalimetallphosphide PH_3 , primäre oder sekundäre Phosphane im Zweiphasensystem oder im superbasischen Medium eingesetzt werden. Zunächst war an einfachen Fluoraromaten, wie z.B. Fluorbenzol, zu untersuchen, inwieweit dieses Verfahren zur Arylierung von Phosphan PH_3 geeignet war.

2. Arylierung von PH₃ durch nucleophile Substitutionsreaktionen an Fluoraromaten im superbasischen Medium DMSO/KOH

Fluorbenzol reagiert mit PH₃ im superbasischen Medium DMSO/KOH unter Bildung von Triphenylphosphan in über 60% iger Ausbeute (Gl. (4a)). Wird Brombenzol anstelle des Fluorbenzols eingesetzt, so erhält man nur geringe Mengen PhPH₂ (3%) und Ph₂PH (5%) [15] (Gl. (4b)). Mit Chlorbenzol bleibt die Reaktion aus.

$$\frac{C_6H_5F}{Ph_3P} \qquad (4a)$$

$$PH_{3} \xrightarrow{C_{6}H_{3}Br} PhPH_{2} + Ph_{2}PH$$
(4b)
(3%) (5%)

Bei nucleophilen aromatischen Substitutionsreaktionen ist das Fluoridion eine bessere Abgangsgruppe als Chlorid und Bromid [16]. Sulfonsäuregruppierungen in 2- und 4-Position des Fluorbenzols erleichtern die nucleophile Verdrängung des Fluors durch die Phosphidanionen. Die nucleophile Phosphinierung sollte daher in diesen Derivaten unter milden Bedingungen und in selektiver Weise, ohne gleichzeitige Ablösung der Sulfonsäuregruppierungen, ablaufen.

Phosphan, PH₃, reagiert mit dem Kaliumsalz der p-Fluorbenzolsulfonsäure 1 [17a] im superbasischen Medium DMSO/KOH glatt unter Bildung des Tri-

(5a)

kalium-tris-*p*-sulfonatophenylphosphans **2** in ca. 60 prozentiger Ausbeute. Kaliumhydroxid wurde in pulverisierter Form mit einem Wassergehalt von *ca*. 15% eingesetzt (Gl. (5)).

$$PH_{3} + 3F - \underbrace{O}_{(1)} - SO_{3}K \xrightarrow{DMSO/KOH}_{-3 H_{2}O} P \left(\underbrace{O}_{-3 KF} - SO_{3}K \right)_{3}$$
(1)
(2)
(5)

$$PH_3 + OH^- \implies PH_2^- + H_2O$$

$$PH_{2}^{-} + F \longrightarrow SO_{3}K \longrightarrow H_{2}P \longrightarrow SO_{3}K + F^{-}$$
(1)
(3)
(5b)

$$H_2P - \swarrow -SO_3K + OH^- \rightleftharpoons \left[HP - \swarrow -SO_3K\right]^- + H_2O$$
(3a)
(5c)

$$\left[HP - \underbrace{\bigcirc}_{K} - SO_{3}K\right]^{-} + 1 \longrightarrow HP \left(\underbrace{\bigcirc}_{K} - SO_{3}K\right)_{2} + F^{-}$$
(4)
(5d)

$$HP\left(\left\langle \sum -SO_{3}K\right\rangle_{2} + OH^{-} \rightleftharpoons \left[P\left(\left\langle \sum -SO_{3}K\right\rangle_{2}\right]^{-} + H_{2}O\right)\right]$$
(5e)

$$\left[P + \left(\overbrace{} SO_{3}K \right)_{2}\right]^{-} + 1 \longrightarrow P + \left(\overbrace{} SO_{3}K \right)_{3} + F^{-}$$
(2)
(5f)

Die Arylierung von PH_3 wird von der nucleophilen Substitution des Fluors in 1 durch das PH_2^- -Ion eingeleitet (Gl. (5b)), das sich durch Deprotonierung von PH_3 durch die im aprotisch dipolaren Lösungsmittel starke Base OH⁻ bildet [18] (Gl. (5a)).

Das ³¹P-NMR-Spektrum einer bei 20°C gesättigten Lösung von PH₃ in DMSO zeigt ein Quartett bei $\delta P = -233$ ppm [¹J(PH) = 220 Hz] (Abb. 1(a)), das auf Zugabe von festem KOH zu einem stark verbreiterten Singulett kollabiert (Halbwertsbreite 76 Hz) (Abb. 1(c)). Seine chemische Verschiebung ($\delta P = -231.5$ ppm) unterscheidet sich nur wenig von der des KPH₂ ($\delta P = -231.4$ ppm) [19a], das durch Umsetzung von PH₃ mit Kaliumhydrid in DMSO dargestellt wurde (Abb. 1(d)). Die Koaleszenz der ³¹P-¹H-Kopplungsfeinstruktur des ³¹P-NMR-Signals der Lösung von PH₃ im System DMSO/KOH_(s) ist auf einen im Vergleich zur Zeitskala des NMR-Experiments rasch verlaufenden Protonenaustausch entsprechend Gl. (5a) zurückzuführen. Das ³¹P-NMR-Signal der Lösung von PH₃ im superbasischen Medium wird auf Zusatz von Wasser stark verbreitert (Halbwertsbreite 160 Hz) und geringfügig nach höherem Feld ($\delta P = -232$ ppm) verschoben (Abb. 1(b)).

Die nucleophile Substitution des Fluoratoms in 1 liefert zunächst das primäre Phosphan 3 (Gl. (5b)), das durch eine Folge von Deprotonierungs- (Gl. (5c), (5e)) und Substitutionsreaktionen (Gl. (5d), (5f) unter intermediärer Bildung des sekundären Phosphans 4 in das Trikalium-trisulfonatophenylphosphan 2 überführt wird. Die PH-Acidität nimmt, ähnlich wie bei den entsprechenden Phenylderivaten innerhalb der Reihe von PH₃ über 3 nach 4 zu (pK_a -Werte: PH₃ 27 [19b]; PhPH₂ 24.5; Ph₂PH 21.7 [19c]). Dies begünstigt die Bildung des tertiären Phosphans 2 bei der Arylierung von PH₃ mit 1 unter den in Gl. (5) angegebenen Bedingungen. Mit fortschreitender Umsetzung nimmt dabei jedoch die Konzentration an Wasser im Reaktionsmedium zu. Dies führt, wie in einem getrennten Experiment gezeigt werden konnte, über die Verschiebung des Deprotonierungsgleichgewichts (5a) zur

Abb. 1. ³¹P-NMR-Spektren. (a) PH_3 in DMSO (20°C). (b) Lösung von PH_3 in DMSO/KOH nach Zusatz von H_2O . (c) Lösung von PH_3 in DMSO/KOH-Pulver. (d) Lösung von KPH_2 in DMSO (20°C).

ppm

Abnahme der PH₂⁻-Konzentration unter Abgabe von PH₃. Dabei entfärbt sich die ursprünglich intensiv gelbe Lösung. Die ³¹P-NMR-spektroskopisch ermittelte Gesamtkonzentration an Phosphor einer mit PH₃ gesättigten 1 m Lösung von festem KOH (kommerziell erhältliches KOH-Pulver enthält 15% Wasser) in DMSO nimmt bei Zugabe von drei Äquivalenten Wasser unter PH₃-Abgabe bis auf den Wert der Sättigungskonzentration von PH₃ in wasserhaltigem DMSO ab (ca. 0.1 mol/l bei 20°C) (Abb. 2). Wird NaOH anstelle von KOH eingesetzt, so ist die maximal erreichbare Gesamtkonzentration an Phosphor (PH₃ und PH_2^-) in einer mit PH_3 gesättigten DMSO-Lösung deutlich niedriger. Bei Verwendung von 1,2-Dimethoxyethan (DME) als Lösungsmittel mit der im Vergleich zum DMSO geringeren Polarität (ϵ) und Donorstärke (DN) (DMSO: $\epsilon = 45.0$, DN = 29.8 [20a]; DME: $\epsilon = 7.2$, DN = 20) ist die maximal erreichbare Gesamtkonzentration an Phosphor deutlich niedriger, da hier die Basizität des OH--Ions durch die Stabilisierung des Kontaktionenpaars {K⁺ · · · OH⁻} niedriger ist [20a].

Aus thermodynamischen Daten läßt sich nach Jolly [21a] für die Gleichgewichtskonstante der Deprotonierung einer schwachen Säure HA durch festes KOH (KOH_(s)) bzw. NaOH (NaOH_(s)) entsprechend Gl. (6) ein Wert von 10^{31-pK_a} bzw. 10^{23-pK_a} abschätzen; dabei ist K_a die Dissoziationskonstante der Säure HA im Aquosystem. Danach ist plausibel, daß die Gesamtkonzentration an Phosphor bei Verwendung von festem KOH zur Deprotonierung der schwachen Säure PH₃ wesentlich größer ist als beim Einsatz von NaOH. Auch im Falle der N-Arylierung

Abb. 2. Gesamt-P-Konzentration [mol P/I] in Abhängigkeit von der Einwaagekonzentration an H_2O [mol/I] bei 20°C. (a) DMSO/KOH. (b) DME/KOH. (c) DMSO/NaOH.

TABELLE 1. ³¹P(¹H)-NMR-Daten der Phosphane 2–4, 6–17, TPPTS und TPPMS. Chemische Verschiebung δP rel. zu 85proz. H₃PO₄ (extern), Kopplungskonstanten in Hz (in Klammern)

2	- 8.9	11	- 10.8
2a	31.4	11a	40.1
3	-148.3	12	- 19.4
4	- 43.2 (228)	13	-8.1
6	- 46.5 (245)	14	-24.0
6a	1.6 (620.4)	15	-8.4
6b	19.4	16	-7.3
7	-13.2	17	-13.0
8	-23.9	TPPTS	- 5.76 [7a]
9	- 16.0		— 5.5 [9b]
10	- 7.9	TPPMS	– 5.9 [7c]

von Benzamid im Zweiphasensystem $Toluol/KOH_{(s)}$ erwies sich festes KOH als wesentlich stärkere Base als NaOH_(s) [21b].

$$2 \text{ MOH}_{(s)} + \text{HA} \Longrightarrow M^+ + A^- + \text{MOH} \cdot \text{H}_2\text{O}_{(s)}$$
$$M = K, \text{ Na}$$
(6)

Wird bei der Umsetzung von PH₃ mit 1 überschüssiges Kaliumhydroxid eingesetzt (molares Verhältnis 1: KOH_(s) etwa 1:5), so zeigt das ³¹P-NMR-Spektrum des Reaktionsgemisches neben dem Signal von 2 ($\delta P = -8.9$ ppm, Tab. 1) ein Dublett bei -43.2 ppm [(${}^{1}J(PH) = 228$ Hz], das bei ${}^{1}H$ -Entkopplung zu einem Singulett kollabiert. Wir ordnen dieses Signal, dessen δP -Wert dem von Ph₂PH ($\delta P = -41.1$ ppm, $^{1}J(PH) = 214$ Hz) [15a] vergleichbar ist, dem sekundären Phosphan 4 zu. Bei weiterer Steigerung des KOH-Überschusses (molares Verhältnis 1: KOH ca. 1:7) tritt im ³¹P-NMR-Spektrum des Reaktionsgemisches neben den Resonanzen von 2 und 4 ein zusätzliches, stark verbreitertes Signal bei -148.3 auf, das dem primären Phosphan 3 zugeordnet wird (vgl. PhPH₂: $\delta P = -122$ [15] (Tab. 1). Versuche, die in Wasser hervorragend löslichen Phosphane 2, 3 und 4 durch Umkristallisation voneinander zu trennen, waren erfolglos.

Setzt man bei den Arylierungsreaktionen von PH_3 nach Gl. (5) anstelle von 1 das Dikalium-fluorbenzol-2,4-disulfonat 5 [17a,b] ein, so bildet sich 6, das erste wasserlösliche sekundäre Phosphan mit sulfonierten aromatischen Resten, in selektiver Weise (Gl. (8a)). Das Fluorbenzoldisulfonat 5 läßt sich durch Sulfonierung von *p*-Fluorbenzolsulfonsäurechlorid mit Oleum und anschließende Neutralisation mit Kaliumcarbonat in guten Ausbeuten darstellen (Gl. (7)). Der Trimethylsilylester der Fluorbenzol-2,4-disulfonsäure wurde von Johannsen und Sartori [17a] durch elektrophile Sulfonierung von Fluorbenzol mit SO₃ und anschließende Umsetzung der dabei gebildeten Sulfonsäure mit Trimethylchlorsilan erhalten. Nach den Ergebnissen von Cerfontain *et al.* führt auch die Sulfonierung von *p*-Fluorbenzolsulfonsäure mit 98.1 prozentiger H_2SO_4 bei 150–170°C ausschließlich zur Fluorbenzol-2,4-disulfonsäure [17b].

$$F \longrightarrow SO_2Cl \xrightarrow{1) Oleum} F \longrightarrow SO_3K$$

$$SO_3K$$
(5)
(7)

$$PH_{3} + 2 \xrightarrow{F \longrightarrow SO_{3}K} SO_{3}K \xrightarrow{DMSO/KOH} HP \left(\longrightarrow SO_{3}K - SO_{3}K \right)_{2} (8a)$$
(5)
(6)

Das sekundäre Phosphan 6 zeigt im ³¹P-NMR-Spektrum ein Dublett [$\delta P = -46.5 \text{ ppm}$, ¹J(PH) = 245 Hz], dessen chemische Verschiebung der von 4 [$\delta P = -43.2 \text{ ppm}$, ¹J(PH) = 228 Hz] und Ph₂PH [$\delta P = -41.1 \text{ ppm}$, ¹J(PH) = 214 Hz] [15] vergleichbar ist (Tab. 1). In D₂O-Lösung unterliegt 6 einem langsamen H/D-Austausch unter Bildung von DP-[C₆H₃-2,4-(SO₃K)₂]₂ [$\delta P = -44.6 \text{ ppm}$; ¹J(PD) = 38.1 Hz].

6 wird in neutraler wäßriger Lösung von Luftsauerstoff nur sehr langsam oxidiert. Mit H_2O_2 läßt es sich glatt in die Phosphinsäure 6b ($\delta P = 19.4$ ppm; vgl. Ph₂P(O)OH; $\delta P = 16.9$ ppm [15b]) überführen (Gl. (8b), (8c)). Als Zwischenprodukt bildet sich dabei das Phosphanoxid 6a, das ³¹P-NMR-spektroskopisch charakterisiert wurde ($\delta P = 1.6$ ppm; ¹J(PH) = 620.4 Hz; vgl. Ph₂P(O)H: $\delta P = 22.9$ ppm; ¹J(PH) = 490 Hz [15c]).

Durch weitere Arylierung von 6 mit Fluorbenzol im superbasischen Medium erhält man das tetrasulfonierte Triphenylphosphan 7, das sich durch eine ungewöhnlich hohe Wasserlöslichkeit (1.3 kg/l Wasser) auszeichnet. Die Alkylierung von 6 mit n-Butylbromid bzw. Benzylbromid entsprechend Gl. (9) liefert 8 bzw. 9, sulfonierte tertiäre Phosphane mit Alkylseitenketten.

$$6 \xrightarrow{^{n}BuBr/PhF/PhCH_{2}\cdot Br}{DMSO/KOH} \xrightarrow{^{-}KBr/KF}{SO_{3}K} SO_{3}K$$

$$7 (R = Ph)$$

$$8 (R = ^{n}Bu)$$

$$9 (R = CH_{2}\cdot Ph)$$
(9)

3. Kristall- und Molekülstruktur von 2

Über die Struktur freier wasserlöslicher Phosphane mit sulfonierten aromatischen Resten existieren bislang keine Berichte in der Literatur. Casalnuovo und Calabrese [22] beschrieben als erste einen Pd^0 -Komplex ($Pd[Ph_2P(m-C_6H_4-SO_3Na)]_3$) des monosulfonierten Triphenylphosphans. Obwohl mittlerweile die Koordinationschemie des TPPTS gut untersucht wurde [9b,c], gelang es erst kürzlich, eine Komplexverbindung {[Na-Kryptofix-221]_3[W(CO)_5P(C_6H_4-m-SO_3)_3]} dieses Liganden durch Röntgenstrukturanalyse zu charakterisieren [23].

Bei der Aufarbeitung des Reaktionsgemisches der Umsetzung von PH₃ mit KCl-haltigem *p*-F-C₆H₄-SO₃K, das durch Hydrolyse von *p*-F-C₆H₄SO₂Cl mit KOH dargestellt wurde, fällt das tertiäre Phosphan in Form wohl ausgeprägter Kristalle der Zusammensetzung $2 \cdot \text{KCl} \cdot 0.5\text{H}_2\text{O}$ (Raumgruppe *Fd*3) an [1].

Die Einheitszelle enthält 32 Formeleinheiten. Die ersten Koordinationssphären der Kaliumionen sind durch acht Sauerstoff- und neun Cl-Atome besetzt. Das Anion von 2 besitzt kristallographische C_3 -Symmetrie (Abb. 3). Die P-C-Bindungen [1.843(4) Å] in 2 ·

Abb. 3. Struktur des Anions von 2.

TABELLE 2. Bindungslängen (Å) und -winkel (°) des Anions $P(C_6H_4,p-SO_3^-)_3$ in 2·KCl·0.5H₂O

P(1)-C(1)	1.843(4)	C(1) - P(1) - C(1a)	103.5(2)
C(4)-S(1)	1.776(4)	P(1)-C(1)-C(2)	124.6(3)
S(1)-O(1)	1.413(4)	P(1)-C(1)-C(6)	116.3(3)
S(1)-O(2)	1.406(4)	O(1)-S(1)-O(2)	113.5(3)
S(1)-O(3)	1.440(5)	O(1)-S(1)-O(3)	109.1(3)
		O(2)-S(1)-O(3)	110.8(3)

KCl \cdot 0.5H₂O sind nur wenig länger als die in Ph₃P (Mittelwert: 1.828(3) [24] bzw. 1.831(2) Å [25]). Für die C-P-C-Valenzwinkel in 2 (103.5(2)°) und Ph₃P (Mittelwert 103.0(8) [24] bzw. 102.8(9)° [25]) werden nahezu identische Werte gefunden (Tab. 2).

Die aromatischen Reste sind im gleichen chiralen Sinn gegeneinander verdreht. Der Winkel ω zwischen der Ebene, die von den drei *ipso*-C-Atomen [C(1), C(1a), C(1b)] aufgespannt wird, und der Ebene der aromatischen Ringsysteme beträgt 65.7°. In festem Ph₃P sind die Ph-Ringe dagegen so angeordnet, daß das Gesamtmolekül keine Symmetrie besitzt ($\omega_1 = 67.8$, $\omega_2 = 36.5$, $\omega_3 = 64.8°$) [24]. Die Konformationsanalyse des isolierten Ph₃P-Moleküls mit C₃-Symmetrie liefert für ω die Werte 59.3, 57.3 und 58.1°. Ausgehend von den Röntgenstrukturdaten [25] erhält man für ω_1 bis ω_3 70.5, 41.0 und 61.0° [26].

Die repulsive Wechselwirkung der endoständigen H-Atome an C(2), C(2a), C(2b) der benachbarten aromatischen Ringsysteme führt zur Aufweitung der Winkel P-C(1)-C(2) [bzw. P-C(1a,b)-C(2a,b)] (124.6(3)°) im Vergleich zu P-C(1)-C(6) [bzw. P-C(1a,b)-C(6a,b)] (116.3(3)°). Die C_6H_4 -SO₃⁻-Ringe werden in Richtung auf das freie Elektronenpaar gekippt.

4. Arylierung primärer und sekundärer Phosphane im superbasischen Medium mit den Fluorbenzolsulfonaten 1 bzw. 5

In analoger Weise wie PH_3 lassen sich auch primäre und sekundäre Phosphane nach dem von uns entwikkelten Verfahren mit den Fluorbenzolsulfonaten 1 bzw. 5 arylieren und in wasserlösliche Derivate (7, 10-17) überführen (Gl. (12), (13)).

Auf diese Weise gelingt es auch, tertiäre Phosphane mit heterozyklischen oder sperrigen Substituenten (12– 17) ausgehend von den entsprechenden Phosphanen $R(2,4,6-{}^{i}Pr_{3}C_{6}H_{2})PH$ (R = Me, Ph), (2-Pyridyl)PH₂ [27] und (3-Pyridyl)₂PH [28] in guten bis befriedigenden Ausbeuten darzustellen.

(**2a**)

Die Phosphane 2, 6-17 zeigen in wäßriger Lösung das Verhalten von 1:1- (10, 13, 14), 2:1- (11, 15, 16), 3:1- (2) bzw. 4:1-Elektrolyten (6-9, 17). Die Wasserlöslichkeit nimmt mit steigender Zahl der SO₃K-Gruppen pro Molekül von 85 g (11) bis auf 1.3 kg/l Wasser (7) zu. 7 ist unseres Wissens derzeit das Phosphan mit der größten Löslichkeit in Wasser und übertrifft darin das bei der großtechnisch durchgeführten Hydroformylierung von Propen nach dem Rhône-Poulenc-Ruhrchemie-Verfahren eingesetzte TPPTS (1.2 kg/l) [2].

Die tertiären Phosphane 2, 7–17 sind stabil gegenüber Luftsauerstoff. Mit 30% H₂O₂ erfolgt Oxidation unter Bildung der Phosphanoxide, wie am Beispiel von 2 und 11 gezeigt werden konnte (Gl. (14a), (14b)).

5. NMR-spektroskopische Charakterisierung der Verbindungen 1, 2, 5–18

Die Einführung einer SO_3^- -Gruppe bei Bildung von 1 aus C₆H₅F hat eine Tieffeldverschiebung des ¹³C{¹H}-NMR-Signals von C4 (C₆H₅F/1: 124.1/139.5 ppm) um *ca.* 15 ppm zur Folge, während die δ C-Werte der übrigen C-Atome nur wenig beeinflußt werden

TABELLE 3. ¹³C{¹H}-NMR-Daten der Verbindungen 1, 2, 5–12 und 15–17. Chemische Verschiebung δ C rel. zu TMS, Kopplungskonstanten ⁿJ(PC) bzw. ⁿJ(FC) in Hz (in Klammern); Lösungsmittel D₂O

	C1 ^a	C2	C3	C4	C5	C6	C7 b,c	C8	C9	C10	C11
1	164.9	116.8	128.9	139.5	128.9	116.8					·····
	(248.7)	(22.6)	(9.3)	(3.4)	(9.3)	(22.6)					
1a	161.4	132.5	131.1	127.3	136.7	119.5					
	(249.1)	(14.7)		(3.7)	(8.8)	(22.0)					
2	140.1	135.1	126.9	144.5	126.9	135.1 ^d					
	(11.0)	(19.8)	(7.1)		(7.1)	(19.8)					
5	160.4	130.6	131.6	139.2	126.5	118.1 ^d					
	(255.2)	(17.6)	(9.8)	(1.2)	(1.9)	(23.3)					
6	137.8	147.4	138.7	144.0	128.7	125.0 ^d					
	(23.0)	(19.2)	(1.3)			(2.5)					
6b	137.5	148.0	137.7	148.0	129.9	128.2					
	(139.2)	(8.0)	(11.0)	(3.0)	(12.5)	(10.2)					
7	139.7	148.4	137.7	144.4	128.5	125.6	137.5	· 134.6	129.8	130.2	
	(26.9)	(25.5)				(3.8)	(9.3)	(21.4)	(7.5)		
8	141.1	148.2	135.6	143.8	128.4	125.7	29.1	27.0	24.5	13.9	
	(31.0)	(24.5)				(3.6)	(16.1)	(12.8)	(13.4)		
9	139.8	148.5	136.1	144.4	128.7 °	125.8	139.1 °	130.3 °	127.3 °	127.3 °	34.2 f
	(31.1)	(25.2)				(3.8)	(10.3)	(8.6)	(2.4)		(15.8)
10	142.0	134.5	126.9	145.8	126.9	134.5	137.3	134.9	130.0	130.6	
	(12.0)	(19.2)	(6.7)		(6.7)	(19.2)	(8.8)	(20.0)	(7.2)		
11	139.5	148.9	137.6	144.5	128.4	125.3	137.0	134.4	129.7	130.0	
	(25.7)	(25.9)				(4.3)	(9.3)	(20.0)	(6.9)		
11a	130.8	149.2	137.8	148.0	128.1	127.6	132.4	132.8	129.7	133.5	
	(110.4)	(6.8)	(13.3)	(2.7)	(8.4)	(12.6)	(111.0)	(10.2)	(12.8)	(2.6)	
12	139.0	134.6	126.7	144.5	126.7	134.6	132.4	153.7	150.4	125.5	143.3
	(9.8)	(19.8)	(7.2)		(7.2)	(19.8)	(13.1)	(27.8)		(4.2)	(14.3)
15	141.0	134.7	126.5	144.0	126.5	134.7	135.4	134.9	129.9	130.7	
	(10.9)	(19.3)	(7.0)		(7.0)	(19.3)	(7.6)	(20.1)	(7.6)		
16	139.4	135.3	126.7	144.4	126.7	135.3	161.1	150.8	124.9	138.6	129.9
	(10.7)	(19.9)	(7.4)		(7.4)	(19.9)	(5.0)	(12.1)		(3.0)	(16.1)
17	138.1	148.9	137.7	144.9	128.9	125.8	162.9	150.6	124.9	138.5	130.7
	(26.0)	(25.9)				(4.1)	(6.2)	(13.9)		(1.9)	(13.0)

^a Indizierung der C-Atome C1-C6: **1**, **2**, **10**, **12–16**: C1 (*ipso*, P), C2/6 (*o*), C3/5 (*m*), C4 (*p*, SO₃K); **5–9**, **11**, **11a**, **17**: C1 (*ipso*, P), C2 (*o*, SO₃K), C3 (*m*), C4 (*p*, SO₃K), C5 (*m*), C6 (*o*). ^b Indizierung der C-Atome der Ph-Reste: C7 (*ipso*), C8 (*o*), C9 (*m*), C10 (*p*). ^c Indizierung der C-Atome in den 2-Py-, 3-Py- und ⁿBu-Resten: C7 (*ipso*), C8 (*o*, 3-Py; *m*, 2-Py), C9 (*p*), C10 (*m*), C11 (*o*); ⁿBu: C7–C10 (CH₃). ^d ¹³C-NMR-Spektren (d = Dublett, t = Triplett, q = Quartett, m = Multiplett): **2**: 140.1 ppm, m [C1, ²*J*(PC) = 11.0 Hz]; 135.1 ppm, ddd [C2, ²*J*(PC) = 19.8, ¹*J*(CH) = 163.7, ³*J*(CH) = 7.1 Hz]; 126.7 ppm, dt [C3, ²*J*(PC) = 7.1, ¹*J*(CH) = 165.7, ³*J*(CH) = 6.1 Hz]; 144.5 ppm, t [C4, ³*J*(CH) = 8.0 Hz]; **5**: 161.2 ppm, dm [C1, ¹*J*(CF) = 255.2, ³*J*(CH) = 9.1, 10.9, ²*J*(CH) = 4.6 Hz]; 130.6 ppm, qt [C2, ²*J*(CF) = 16.3, ³*J*(CH) = 4.9, ²*J*(CH) ≈ ⁴*J*(CH) ≈ 1.7 Hz]; 131.6 ppm, ddd [C3, ³*J*(CF) = 9.8, ¹*J*(CH) = 168.1, ³*J*(CH) = 7.2 Hz]; 139.2 ppm, qt, [C4, ³*J*(CH) = 8.5, ²*J*(CH) = 3.7, 1.1, ⁴*J*(CF) = 1.2 Hz]; 126.5 ppm, dm [C5, ³*J*(CF) = 1.9, ¹*J*(CH) = 170.3, ³*J*(CH) = 6.7, ²*J*(CH) = 0.9 Hz]; 118.8 ppm, ddt [C6, ¹*J*(CH) = 169.0, ²*J*(CH) ≈ 1, ⁴*J*(CH) ≈ 1, ²*J*(CF) = 23.2 Hz]; **6**: 137.8 ppm, dm [C1, ¹*J*(PC) = 23.0, ³*J*(CH) = 8.5, 6.5, ²*J*(CH) = 1.5 Hz]; 147.4 ppm, dd [C2, ²*J*(PC) = 19.2, ³*J*(CH) = 8.2 Hz]; 138.7 ppm, dd [C3, ¹*J*(CH) = 166.2, ³*J*(CP) = 1.3 Hz]; 144.0 ppm, d [C4, ³*J*(CH) = 8.5 Hz]; 128.7, ddd [C5, ¹*J*(CH) = 166.6, ³*J*(CH) = 6.1, ²*J*(CH) = 2.1 Hz]; 125.0 ppm, ddd [C6, ²*J*(PC) = 2.5, ¹*J*(CH) = 168.6, ²*J*(CH) = 5.5 Hz]. ^c Zuordnung unsicher. ^f -CH₂-Ph-Rest. $(C_6H_5F/1: \delta C1 = 163.3/164.9; \delta C(2/6) = 115.5/$ 116.8; $\delta C(3/5) = 130.1/128.9 \text{ ppm}$ [30a] (Tab. 3). Die Kopplungskonstanten ${}^{n}J(CF)$ (n = 1-4) in 1 und C₆H₅F unterscheiden sich nur wenig. Die zusätzliche SO_3^- -Gruppierung in 5 befindet sich in o-Position zum F, wie die Tieffeldverschiebung des ¹³C{¹H}-NMR-Signals von C2 beim Gang von 1 (δ C2 = 116.8 ppm) nach 5 (δ C2 = 130.6 ppm) und der Vergleich mit den $^{13}C{^{1}H}-NMR-Spektren von o-F-C_6H_4-SO_3K$ (1a) $(\delta C2 = 132.5 \text{ ppm}, {}^{2}J(CF) = 14.7 \text{ Hz})$ [17c,d] zeigen. Die Größe der ¹⁹F-¹³C-Dublettaufspaltung des Signals von C2 in 5 (${}^{2}J(CF) = 17.6$ Hz) und 1a (${}^{2}J(CF) = 14.7$ Hz) liegt in dem für ${}^{2}J(CF)$ in mono- und disubstituierten aromatischen Systemen typischen Bereich $(C_6H_5F: 21.0; 1: 22.6 \text{ Hz})$. Die δ C-Werte der Atome C1, C3 und C6 von 5 sind denen von 1 und 1a gut vergleichbar, während das ¹³C-NMR-Signal des pständigen C-Atoms (C4) von 1a im Vergleich zu 1 und 5 nach höherem Feld verschoben ist. Seine chemische Verschiebung δC entspricht der von C4 im Fluorbenzol ($\delta C = 124.1$ ppm, ${}^{4}J(CF) = 3.2$ Hz) [30a]. Die Zuordnung der ¹³C-NMR-Signale von 1, 1a und 5 wird durch die ${}^{1}H-{}^{13}C-Kopplungsfeinstruktur {}^{n}J(CH)$ (n = 1-3) in den ¹³C-NMR-Spektren gestützt (Tab. 3, Abb. 4). Die ¹³C-NMR-Linienmuster für C1–C6 lassen sich mit den aus den ¹³C{¹H}-NMR-Spektren zu entnehmenden Kopplungskonstanten ⁿJ(CF) (n = 1-4)sowie unter der Annahme ⁴J(CH) ≈ 0 und ²J(C(m)H) $<^{3}J(C(m)H)$ (m = 1-6) [30a] näherungsweise simulieren.

Während 1 im 400 MHz-¹H-NMR-Spektrum das Linienmuster eines AA'BB'X-Spinsystems [31a] zeigt (A, A' = H_a (ortho); B, B' = H_b (meta); X = F) werden für 5 drei Signalgruppen bei $\delta H = 7.38$, 7.97 und 8.17 ppm beobachtet. Aus der Analyse des ¹H- bzw. ¹H{¹⁹F}-NMR-Spektrums (Spinsysteme ABCX bzw. ABC [31a]; $A = H_a$; $B = H_b$; $C = H_c$; $X = {}^{19}F$) ergeben sich die Werte für die Kopplungskonstanten "J(HH) und ⁿJ(FH) (n = 3, 4) (Abb. 5). Das ¹H-NMR-Signal mit der größten ${}^{1}H-{}^{19}F$ -Dublettaufspaltung [${}^{3}J(H_{a}F)$ = 9.9 Hz] wird dem o-ständigen H-Atom H_a (δH = 7.38 ppm) zugeordnet. Das Achtlinienmuster bei 7.97 ppm im ¹H-NMR-Spektrum entspricht dem zu H. benachbarten H-Atom $H_b [{}^{3}J(H_aH_b) = 8.6, {}^{4}J(H_bH_c)$ = 2.3, ${}^{4}J(H_{b}F)$ = 4.6 Hz]. Bei ${}^{19}F$ -Entkopplung kollabiert es zu einem Dublett von Dubletts $[{}^{3}J(H_{a}H_{b}),$ $^{4}J(H_{b}H_{c})]$. Für H_c, das im ¹H-NMR-Spektrum als Dublett von Dubletts erscheint $[{}^{4}J(H_{b}H_{c}) = 2.3,$ ${}^{4}J(H_{c}F) = 6.6$ Hz], wird im ${}^{1}H{}^{19}F{}-NMR-Spektrum$ ein Dublett $[{}^{4}J(H_{b}H_{c}) = 2.3 \text{ Hz}]$ beobachtet.

Abb. 4. 62.9 MHz- 13 C-NMR-Spektrum von 5 (Lösungsmittel D₂O).

Die chemische Verschiebung δP der vom PPh₃ abgeleiteten Phosphanliganden 2, 7, 10, 11 und 15 liegt in einem engen Bereich (-7.9 bis -13.2 ppm) und ist vom Sulfonierungsgrad (1–4) nahezu unabhängig (Tab. 1). Auch die Position des Sulfonatrestes SO₃M hat keinen signifikanten Einfluß auf den Wert von δP , wie der Vergleich der Daten von 2 (-8.9 ppm) und TPPTS (-5.76, -5.3 ppm) [7a,9b] mit m-ständiger SO₁Na-Gruppe zeigt. Die chemischen Verschiebungen δP von 6 und Ph₂PH ($\delta P = -43.5$ ppm; ¹J(PH) = 237.6 Hz [15]) unterscheiden sich nur wenig. Dies trifft in analoger Weise auch für die Salze der Phosphinsäuren $Ph_2P(O)O^- M^+ (M = K, Na) (\delta P = 16.9 \text{ ppm})$ [32] und **6b** ($\delta P = 19.4$ ppm) bzw. die Phosphanoxide Ph₃P(O) ($\delta P = 27$ ppm) [33a], O = P(p-C_6H_4-SO_3K)_3 (2a; $\delta P = 31.4 \text{ ppm}$), $O = P(m - C_6 H_4 SO_3 Na)_3 (\delta P =$ 33.4 ppm) [7c], $Ph_2P(O)-C_6H_3-2,4-(SO_3K)_2$ (11a; $\delta P =$ 40.1 ppm) und Ph₂P(O)-*m*-C₆H₄SO₃Na ($\delta P = 33.9$ ppm) [7c] zu.

Die mono- bzw. disulfonierten Phenylreste in den Phosphanliganden 2 bzw. 6 zeigen vier bzw. sechs ¹³C{¹H}-NMR-Signale, deren Zuordnung durch die Analyse der ¹H-¹³C-Kopplungsfeinstruktur in den ¹³C-NMR-Spektren (Abb. 6) und durch Vergleich ihrer ¹³C{¹H}-NMR-Daten mit denen von Ph₃P [30b] und 1 bzw. 5 abgesichert wurde. Die ¹³C{¹H}-NMR-Signale von C4 bzw. C2 und C4 in 2 bzw. 6 sind infolge des *-I*-Effekts der SO₃-Gruppierungen im Vergleich zu den entsprechenden Resonanzen des Ph₃P um 10–15 ppm nach niedrigem Feld verschoben. Entsprechende Be-

Abb. 6. 62.9 MHz- $^{13}C{^{1}H}$ -NMR- und ^{13}C -NMR-Spektrum (A', B', C', D') von 6 (Lösungsmittel D₂O).

funde liegen für das $P(m-C_6H_4-SO_3Na)_3$ vor $[\delta C(SO_3Na) = 145.65 \text{ ppm}; {}^{3}J(PC) = 6.0 \text{ Hz}]$ [7a,c]. Während die Signale von C4 im ${}^{13}C{}^{1}H$ -NMR-Spektrum von 2 und 6 keine ${}^{31}P-{}^{13}C$ -Kopplungsfeinstruktur aufweisen, zeigen die Resonanzen von C2 Dublettaufspaltung [${}^{2}J(PC) = 19.8$ bzw. 19.2 Hz]. Beim Gang von 6 zur Phosphinsäure 6b nimmt ${}^{1}J(PC)$ für C1 von 23.0 auf 139.2 Hz zu. Die übrigen PC-Kopplungskonstanten in 6b sind wie in analogen Derivaten des fünfwertigen Phosphors [30a,33b] entsprechend ${}^{3}J(PC)$ $> {}^{2}J(PC) > {}^{4}J(PC)$ abgestuft.

Im ¹H-NMR-Spektrum von 2 (Spinsystem AA'BB'X [31]; A, A' = H_a; B, B' = H_b; X = ³¹P) beobachtet man ein Triplett (H_a) und ein Dublett von Dubletts (H_b) höherer Ordnung. Die Analyse des Spektrums liefert Werte für die ¹H-¹H- und ¹H-³¹P-Kopplungskonstanten [³J(H_aH_b) = 8.4; ⁴J(H_aH_{a'}) = 1.8; ⁴J(H_bH_{b'}) = 1.7; ⁵J(H_aH_{b'}) \approx 0.1; ³J(PH_a) = 8.0; ⁴J(PH_b) = 1.3 Hz], die den von Taddei *et al.* [31b] für eine Serie von Triphenylphosphanderivaten P(C₆H₄-p-X)₃ (X = D, Cl, Br, OMe, Me, NMe₂) gefundenen Daten entsprechen.

In Übereinstimmung mit der vorgeschlagenen Struktur zeigt das ¹H-NMR-Spektrum von 6 das Linienmuster des ABC-Teils eines ABCX-Spinsystems (A = H_a , $\delta H_a = 7.36$ ppm, dd; $B = H_b$, $\delta H_b = 7.71$ ppm, dd; $C = H_c$, $\delta H_c = 8.26$ ppm, t; $X = {}^{31}P$; Indizierung der H-Atome wie in 5). Die Analyse des ¹H-NMR-Spektrums liefert für die Kopplungskonstanten ${}^{3}J(H_aH_b)$, ${}^{4}J(H_bH_c)$, ${}^{3}J(H_aP)$ und ${}^{4}J(H_cP)$ die Werte 8.0, 1.8, 3.9 und 2.3 Hz. Für die PH-Gruppierung wird ein Dublett bei 5.71 ppm [${}^{1}J(PH) = 239.0$ Hz] beobachtet.

Die Zuordnung der ¹³C{¹H}-NMR-Signale von 10, 12, 15 und 16 bzw. 7, 8, 11 und 17 zu den C-Atomen der mono- bzw. disulfonierten aromatischen Reste gelingt durch Vergleich mit den δ C-Werten der C-Atome in den Muttersubstanzen 2 bzw. 6 und den Oxidationsprodukten 6b und 11a. Entsprechendes gilt für die Signale der übrigen C-Atome in 8-12 und 15-17. Hierzu dienen Ph₃P [30b], Ph₃P(O) [33b], 2-PyPH₂ [27] und 3-Py₂PH [28] als Vergleichssubstanzen.

6. Experimenteller Teil

Allgemeine Arbeitsbedingungen und Geräte siehe Lit. [13]. Die Phosphane Ph_2PH [15], $PhPH_2$ [15], 3-Py₂PH [28], 2-PyPH₂ [27], 2,4,6-ⁱPr₃C₆H₂(R)PH (R = Me, Ph) [29] wurden nach Literaturvorschriften dargestellt.

Zur Ermittlung der Gesamtkonzentration an P in den PH_3/OH^- -Deprotonierungsgleichgewichten entsprechend Gl. (5a) wurden 100 ml DMSO bzw. DME vorgelegt, mit 6.6 g 85%igem KOH-Pulver (0.1 mol) bzw. 4.0 g NaOH (0.1 mol) versetzt und die Lösungen mit PH₃ bei 1.1 bar gesättigt. Die Gesamtkonzentration an Phosphor in diesen Lösungen (und nach Zugabe steigender Mengen an H₂O) wurde ³¹P-NMRspektroskopisch durch Integration gegen einen externen Standard (1.0 M Lösung von Ph₂PH in DMSO bzw. DME) ermittelt.

6.1. Darstellung von 1

93.3 ml (96.1 g, 1.0 mol) Fluorbenzol wurden im Verlauf von 1 h unter intensivem Rühren in 200 ml (349.5 g, 3.0 mol) Chlorsulfonsäure getropft. Nach Beendigung der HCI-Entwicklung wurde das Reaktionsgemisch auf 300 g Eis gegossen und die wäßrige Lösung anschließend mit 100 ml Chloroform extrahiert. Die organische Phase wurde zweimal mit je 50 ml Wasser und 50 ml gesättigter NaHCO₃-Lösung gewaschen. Nach Abziehen des Lösungsmittels i. Vak. (20°C, 1.0 mbar) wurde der verbleibende Rückstand (*p*-F-C₆H₄-SO₂Cl) i. Vak. destilliert (Kp. 86–88°C, 0.1 mbar). Ausbeute: 175.0 g (90%); Schmelzp. 35–38°C.

Zur Darstellung von reinem 1 wurden 100 g (0.51 mol) des p-F-C₆H₄-SO₂Cl mit 250 ml Eisessig zum Sieden erhitzt und die Reaktionslösung mit 350 ml Wasser versetzt. Nach 2 h Erhitzen am Rückfluß wurden alle flüchtigen Anteile abgezogen. Dabei blieb

p-F-C₆H₄-SO₃H als farblose Flüssigkeit zurück. Ausbeute: 84 g (94%).

84.6 g (0.48 mol) p-F-C₆H₄-SO₃H wurden in 100 ml H₂O gelöst und portionsweise mit 33.2 g (0.24 mol) K₂CO₃ versetzt, der dabei ausgefallene Niederschlag abfiltriert und aus Wasser umkristallisiert. Dabei fiel 1 in Form farbloser Kristalle an. Ausb. 88.0 g (86%).

Gef.: C, 32.45; H, 1.65. $C_6H_4FKO_3S$ (214.3) ber.: C, 33.6; H, 1.88%. ¹H-NMR: $\delta H_a = 7.68$; $\delta H_b = 7.1$ ppm; ³J(H_aF) = 8.9; ³J(H_aH_b) = 8.7; ⁴J(H_aH_{a'}) = 0; ⁴J(H_bF) = 5.7; ⁴J(H_bH_{b'}) = 3.0 Hz; ¹⁹F-NMR (CCl₃F): -121 ppm.

6.2. Darstellung von 5

29.2 g (0.15 mol) p-F-C₆H₄-SO₂Cl wurden in 25 ml 17% igem Oleum gelöst und 5 h auf 200°C erhitzt. Das Reaktionsgemisch wurde auf 250 ml Eis gegossen und anschließend mit 20 g (0.14 mol) K₂CO₃ versetzt. Das dabei ausgefallene Reaktionsprodukt wurde aus 100 ml H₂O umkristallisiert. Ausbeute: 48.0 g (87%). Das in 5 gebundene Wasser wurde durch Differenzthermoanalyse (DTA) und Thermogravimetrie (TGA) quantitativ ermittelt. Die DTA-Kurve zeigt zwei endotherme Peaks bei 220 und 355°C. Die TGA-Kurve einer bei 100°C i. Vak. getrockneten Probe zeigt eine Gewichtsabnahme von 8–9% (theoretisch zu erwarten: 9.7%).

Gef.: C, 19.31; H, 1.71. $C_6H_3FK_2O_6S_2 \cdot 2H_2O$ (368.4) ber.: C, 19.56 H, 1.91%. ¹⁹F-NMR (CCl₃F): -119 ppm.

6.3. Allgemeine Arbeitsvorschrift zur Arylierung von PH_3 mit C_6H_5X (X = F, Br), p-F-C₆H₄-SO₃K, p-F-C₆H₄ SO₂Cl und F-C₆H₃-2,4-(SO₃K)₂

Die Suspension von KOH-Pulver in DMSO wurde bei Raumtemp. mit PH₃ gesättigt und anschließend mit den in Tab. 4 angegebenen Mengen der Halogenverbindungen im Verlauf von 0.5-2 h versetzt. Bei konstantem geringem PH₃-Überdruck (0.1 bar) wurde 15 h bei 20-100°C gerührt. Die intensiv gelben bis orangeroten Reaktionsgemische der Umsetzung von C₆H₅X mit PH₃ wurden mit entgastem Wasser versetzt. Nach Extrahieren mit CH₂Cl₂ und Abziehen des Lösungsmittels i. Vak. aus den Extrakten erhielt man die Rohprodukte (Ph₃P, Ph₂PH, PhPH₂), die zur weiteren Reinigung fraktionierend destilliert bzw. umkristallisiert wurden. Zur Isolierung von 2 und 6 wurden die Reaktionsgemische mit Isopropanol (200 bzw. 60 ml) versetzt, der dabei ausgefallene Feststoff abfiltriert und mehrmals mit je 50 ml Methanol gewaschen. Nach Umkristallisieren aus Wasser fielen 2 und 6 als Hydrate der Zusammensetzung $2 \cdot 2H_2O$ bzw. $6 \cdot 2H_2O$ in Form farbloser Kristalle an.

2: Gef.: C, 33.26; H, 2.50. $C_{18}H_{12}K_3O_9PS_3 \cdot 2H_2O$ (652.8) ber.: C, 33.12; H, 2.47%.

TABELLE 4. Ansätze, Ausbeuten und analytische Daten von 2,6-17

	g (mmol) Phosphan	DMSO ml	g (mmol) R-X	g (mmol) KOH	Ausb. g (%)
Ph ₃ P	PH ₃	100	9.6 (100)	26.4	5.3
5	2		C ₆ H ₅ F	(400)	(61)
PhPH ₂	PH ₃	500	78.5 (500)	132	1.4
			C ₆ H ₅ Br	(2000)	(3)
Ph ₂ PH					2.3 (5)
2	PH ₃	100	21.4 (100)	19.8	14.0
			1	(300)	(64)
2 ª	PH ₃	100	21.4 (100)	26.4	12.4
			1 ^b	(400)	(53)
6	PH ₃		22.1 (60)	12.0	8.1
			5	(182)	(39)
7	2.8 (25)	50	18.4 (50)	3.5	12.0
	PhPH ₂		5	(53)	(60)
7	3.0 (4.3)	30	0.4 (4.3)	0.3	1.5
	6		C ₆ H ₅ F	(4.5)	(45)
8	6.0 (8.6)	40	1.2 (8.6)	0.6	2.6
	6		ⁿ BuBr	(9.1)	(38)
9	1.0 (1.5)	30	0.26 (1.5)	0.11	0.55
	6		Ph-CH ₂ Br	(1.7)	(45)
10	9.3 (50)	40	10.7 (50)	3.5	12
	Ph ₂ PH		1	(53)	(60)
11	4.7 (25)	50	9.2 (25)	1.75	7.7
	Ph ₂ PH		5	(26.5)	(58)
12	2.3 (12.2)	40	2.6 (12.2)	1.65	2.6
	(3-Py) ₂ PH		1	(25)	(53)
13	6.2 (20)	50	4.3 (20)	1.4	6.1
	Ar*(Ph)PH °		1	(21.2)	(58)
14	6.3 (25)	50	5.4 (25)	1.75	4.6
	Ar*(Me)PH °		1	(26.5)	(40)
15	5.5 (50)	50	21.4 (100)	7.0	14.4
	PhPH ₂		1	(106)	(54)
16	5.0 (45)	80	19.3 (90)	6.5	12.5
	(2-Py)PH ₂	<i>(</i> 0	1	(98.5)	(56)
17	0.84 (7.5)	60	4.9 (15)	1.2	2.0
	(2-Py)PH ₂		5	(18.2)	(35)

^a 2·KCl·0.5H₂O. ^b KCl-haltig: dargestellt durch Umsetzung von 19.5 g (0.1 mol) p-F-C₆H₄-SO₂Cl mit wäßriger KOH (50 ml, 2 n). ^c Ar^{*} = 2,4,6-ⁱ Pr₃C₆H₃.

6: Gef.: C, 21.14; H, 1.67; P, 3.95. $C_{12}H_7K_4O_{12}PS_4 \cdot 2H_2O$ (694.8) ber.: C, 20.74; H, 1.60; P, 4.46%.

6.4. Darstellung von 7-9

Die in Tab. 4 angegebenen Mengen des sekundären Phosphans 6 wurden in DMSO gelöst und mit KOH versetzt. Nach 1 h Rühren wurden Fluorbenzol bzw. 1-Brombutan bzw. Benzylbromid zugegeben und das Reaktionsgemisch bei 60°C gerührt. Nach Zugabe von 30 bzw. 40 ml Isopropanol fielen die Phosphane 7-9 als farblose Niederschläge aus dem Reaktionsgemisch aus, die mit 30 ml Methanol gewaschen und anschließend aus Wasser umkristallisiert wurden. 7-9 fielen dabei als Hydrate an. Ansätze und Ausbeuten siehe Tab. 4. 7: Gef.: C, 26.98; H, 2.37; P, 3.84. $C_{18}H_{11}K_4O_{12}PS_4$ • 4H₂O (807.0) ber.: C, 26.79; H, 2.37; P, 3.84%.

8: Gef.: C, 24.74; H, 2.94. $C_{16}H_{15}K_4O_{12}PS_4 \cdot 4H_2O$ (786.9) ber.: C, 24.42; H, 2.95%.

9: Gef.: C, 26.63; H, 2.58. $C_{19}H_{13}K_4O_{12}PS_4 \cdot 4H_2O$ (821.0) ber.: C, 27.80; H, 2.58%.

6.5. Allgemeine Arbeitsvorschrift für die Arylierung primärer und sekundärer Phosphane mit 1 und 5

Die in Tab. 4 angegebenen Mengen an PhPH₂, Ph₂PH, 2,4,6-ⁱPr₃C₆H₂(R)PH (R = Me, Ph), 2-PyPH₂ und 3-Py₂PH wurden in DMSO gelöst und mit der entsprechenden Menge an KOH-Pulver umgesetzt. Nach 1 h Rühren wurden 1 bzw. 5 zugegeben, das Reaktionsgemisch auf 50-60°C erwärmt und 12 h bei dieser Temperatur gerührt. Die Aufarbeitung erfolgte wie vorstehend beschrieben. Dabei erhielt man die Phosphane als farblose Pulver. Ansätze und Ausbeuten siehe Tab. 4.

10: Gef.: C, 54.31; H, 3.91. $C_{18}H_{14}KO_3PS \cdot H_2O$ (398.5) ber.: C, 54.26; H, 4.05%.

11: Gef.: C, 40.89; H, 3.58. $C_{18}H_{13}K_2O_6PS_2 \cdot 2H_2O$ (534.6) ber.: C, 40.44; H, 3.21%.

12: Gef.: C, 50.13; H, 3.35. $C_{16}H_{12}KN_2O_3PS \cdot H_2O$ (400.4) ber.: C, 47.99; H, 3.52%.

13: Gef.: C, 61.46; H, 6.49. $C_{27}H_{32}KO_3PS \cdot H_2O$ (524.7) ber.: C, 61.81; H, 6.53%.

14: Gef.: C, 57.00; H, 6.99. $C_{22}H_{30}KO_3PS \cdot H_2O$ (462.6) ber.: C, 57.12; H, 6.97%.

15: Gef.: C, 40.04; H, 3.50. $C_{18}H_{13}K_2O_6PS_2 \cdot 2H_2O$ (534.6) ber.: C, 40.44; H, 3.21%.

16: Gef.: C, 40.94; H, 2.74. $C_{17}H_{12}K_2NO_6PS_2$ (499.6) ber.: C, 40.87; H, 2.42%.

17: Gef.: C, 26.72; H, 2.11. $C_{17}H_{11}K_4NO_{12}PS_4 \cdot 2H_2O$ (772.9) ber.: C, 26.42; H, 1.96%.

6.6. Oxidation von 2, 6 bzw. 11 mit H_2O_2

Die Lösungen von 0.65 (1.0 mmol) 2, 0.56 g (0.8 mmol) 6 bzw. 0.4 g (0.8 mmol) 11 in 10 ml H₂O wurden mit jeweils 0.5 g (4.4 mmol) 30% igem H₂O₂ versetzt und bei 20°C 12 h gerührt. Nach Abziehen des Lösungsmittels i. Vak. verblieben 2a, 6b und 11a als farblose hygroskopische Pulver. Ausbeuten: 0.58 g (92%) 2a, 0.4 g (66%) 6b, 0.43 g (98%) 11a.

2a: Gef.: C, 34.02; H, 2.05. $C_{18}H_{12}K_{3}O_{10}PS_{3}$ (632.7) ber.: C, 34.17; H, 1.91%.

6b: Gef.: C, 17.96; H, 1.80. $C_{12}H_7K_4O_{14}PS_4 \cdot 4H_2O$ (762.9) ber.: C, 18.89; H, 1.98%.

11a: Gef.: C, 39.46; H, 3.07. $C_{18}H_{13}K_2O_7PS_2 \cdot 2H_2O$ (550.6) ber.: C, 39.26; H, 3.11%.

6.7. Kristallstrukturanalyse von $2 \cdot KCl \cdot 0.5H_2O$

Die experimentellen Daten zur Kristallstrukturanalyse von $2 \cdot \text{KCl} \cdot 0.5 \text{ H}_2\text{O}$ sind in Tab. 5 zusam-

Summenformel	C ₁₈ H ₁₃ ClK ₄ O _{9.5} PS ₃
Molmasse	700.3
Kristallgröße [mm]	0.60×0.58×0.62
Raumgruppe	Fd3, kubisch
Gitterkonstanten <i>a</i> [Å]	27.948(5)
Formeleinheiten Z	32
Dichte $d_{\rm ber}$ [Mg/m ³]	1.702
Temperatur [K]	296
F(000)	11264
μ (Mo-K α) [cm ⁻¹]	10.7
Absorptionskorrektur	semiempirisch
Strahlung	Μο-Κα
Monochromator	Graphit
Gerät	Siemens P4
Scan	$\overline{\omega}$
2θ-Meßbereich [°]	3.0-50.0
ω-Scanbreite [°]	1.50
Scangeschwindigkeit [° min ⁻¹]	2.0-15.0
Reflexe, gemessen	2782
Reflexe, unabhängig	1650
Reflexe, beobachtet	$1332 [F_0 > 4.0\sigma(F_0)]$
Parameter, verfeinert	111
R [%]	5.43
R _w [%]	5.06
$\Delta \delta_{\max} \left[e \dot{A}^{-3} \right]$	+0.78/-0.63

TABELLE 5. Kristallographische Daten von 2 · KCl · 0.5H₂O

mengefaßt. Die Struktur wurde durch direkte Methoden gelöst und nach der Methode der kleinsten Quadrate verfeinert. Die Gewichtung erfolgte nach $w^{-1} = \sigma^2(F) + pF^2$ (p = 0.00001). Die Wasserstoffatome wurden in idealisierten Positionen (Reitermodell, C-H = 0.95 Å) angenommen. Alle Nichtwasserstoffatome erhielten anisotrope Temperaturfaktoren. Die Berechnungen erfolgten mit dem Programmsystem SHELXTL [34].

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie gilt unser Dank für die finanzielle Unterstützung dieser Arbeit.

Literatur

- 1 Teil I: O. Herd, K.P. Langhans, O. Stelzer, N. Weferling und W.S. Sheldrick, Angew. Chem., 105 (1993) 1097.
- (a) M. Barton und J.D. Atwood, J. Coord. Chem., 24 (1991) 43; P. Kalck, Pure Appl. Chem., 61 (1989) 967; (b) E.G. Kuntz, Fr. Pat. 2314190 (20. 6. 1975), Rhône-Poulenc; Chem. Tech., (1987) 570.
- 3 W.A. Herrmann, J. Kulpe, J. Kellner und H. Riepl, *DE 3921295* (3. 1. 1991).
- 4 T. Okano, Y. Moriyama, H. Konishi und J. Kiji, Chem. Lett., (1986) 1463.
- 5 W.A. Herrmann, J. Kulpe, J. Kellner und H. Riepl, DE 3840600 (7. 6. 1990), Hoechst AG.
- 6 Y. Amrani, L. Lecomte, D. Sinou, J. Bakos, I. Toth und B. Heil, Organometallics, 8 (1989) 542.

- 7 (a) C. Larpent, H. Patin, N. Thilmont und J.F. Valdor, Synth. Commun., 21 (1991) 495; (b) S. Ahrland, J. Chatt, N.R. Davies und A.A. Williams, J. Chem. Soc., (1958) 276; (c) C. Larpent und H. Patin, Tetrahedron, 44 (1988) 6107.
- 8 L. Lecomte und D. Sinou, Phosphorus, Sulfur, Silicon, 53 (1990) 239.
- 9 (a) L. Bexten, B. Cornils und D. Kupies, *DE 3431643 A1* (13. 3. 1986), Ruhrchemie AG; (b) W.A. Herrmann, J.A. Kulpe, W. Konkol und H. Bahrmann, *J. Organomet. Chem., 389* (1990) 85; (c) W.A. Herrmann, J.A. Kulpe, J. Kellner, H. Riepl, H. Bahrmann und W. Konkol, *Angew. Chem., 102* (1990) 408.
- 10 H. Schindlbaur, Monatsh. Chem., 96 (1965) 2009.
- 11 H.C.E. McFarlane und W. McFarlane, Polyhedron, 7 (1988) 1875; H.C.E. McFarlane, W. McFarlane und A.S. Muir, Polyhedron, 9 (1990) 1757.
- 12 O. Stelzer, K.P. Langhans, J. Svara und N. Weferling, *EP 0307717* (31. 8. 1988); *EP 0307702* (29. 8. 1988); *US 5,003,108* (26. 3. 1991), Hoechst AG.
- 13 O. Stelzer, K.P. Langhans, J. Svara und N. Weferling, Z. Naturforsch., Teil B, 45 (1990) 203; K.P. Langhans, O. Stelzer und N. Weferling, Chem. Ber., 123 (1990) 995.
- 14 O. Stelzer, K.P. Langhans und N. Weferling (Hoechst AG), DE 4141299 A1 (14. 12. 1991).
- 15 (a) L. Maier, in G.M. Kosolapoff und L. Maier (Hrsg.), Organic Phosphorus Compounds, Bd. 1, Wiley Interscience, New York, 1972, S. 4; (b) A. Schmidpeter und H. Brecht, Z. Naturforsch., Teil B, 23 (1968) 1529; (c) D.G. Gorenstein und D.O. Shak, in D.G. Gorenstein (Hrsg.), Phosphorus-31 NMR-Principles and Applications, Academic Press, Orlando, 1984, S. 550.
- 16 J. March, Advanced Organic Chemistry Reactions, Mechanism and Structure, 3 Aufl., Wiley Interscience, New York, 1985, S. 576.
- 17 (a) H. Johannsen und P. Sartori, Synthesis, (1988) 675; (b) H. Cerfontain, A. Koeberg-Telder und W.A. Zwart Voorspuy, Can. J. Chem., 50 (1972) 1574; (c) O. Herd, O. Stelzer, unveröffentliche Arbeiten; A.P. Zaraiskii, O.I. Kachurin, Ukr. Khim. Zhur., 39 (1973) 117; Chem. Abstr., 78 (1973) 147064t.
- 18 W.S. Matthews, J.E. Bares, J.E. Bartmess, F.G. Bordwell, F.J. Cornforth, G.E. Drucker, Z. Margolin, R.J. McCallum, G.J. McCollum und N.R. Vanier, J. Am. Chem. Soc., 97 (1975) 7006.
- 19 (a) F. Knoll und J.R. van Wazer, J. Inorg. Nucl. Chem., 31 (1969) 2623; (b) R.E. Weston und J. Bigeleisen, J. Am. Chem. Soc., 76 (1954) 3078; (c) K. Issleib und R. Kümmel, J. Organomet. Chem., 3 (1965) 84.
- 20 (a) V. Gutmann, A. Steininger und E. Wychora, Monath. Chem.,
 97 (1966) 460; U. Mayer und V. Gutmann, Struct. Bonding, 12 (1972) 113; (b) D. Martin, A. Weise und H.J. Niclas, Angew. Chem., 79 (1967) 340.
- 21 (a) W.L. Jolly, J. Chem. Educ., 44 (1967) 304; (b) E.V. Dehmlow und B. Lipka, J. Chem. Res. (S), (1985) 107.
- 22 A.L. Casalnuovo und J.C. Calabrese, J. Am. Chem. Soc., 112 (1990) 4324.
- 23 D.J. Darensbourg, C.J. Bischoff und J.H. Reibenspies, *Inorg. Chem.*, 30 (1991) 1144.
- 24 J.J. Daly, J. Chem. Soc., (1964) 3799.
- 25 B.J. Dunne, R.B. Morris und A.G. Orpen, J. Chem. Soc., Dalton Trans., (1991) 653.
- 26 C.P. Brock und J.A. Ibers, Acta Cryst., Teil B, 29 (1973) 2426.
- 27 G.U. Spiegel und O. Stelzer, Chem. Ber., 123 (1990) 989.
- 28 O. Herd, K.P. Langhans, O. Stelzer, N. Weferling und W.S. Sheldrick, Veröffentlichung in Vorbereitung.
- 29 G. Heßler, F. Bitterer und O. Stelzer, unveröffentlichte Arbeiten.
- 30 (a) H.O. Kalinowski, S. Berger und S. Braun, in ¹³C-NMR-Spektroskopie, Georg Thieme Verlag, Stuttgart, New York, 1984;

(b) T. Bungaard und H. Jakobsen, Acta Chem. Scand., 26 (1972) 2548.

- 31 (a) J.W. Emsley, J. Feeney und L. Sutcliffe, in *High Resolution Nuclear Magnetic Resonance Spectroscopy*, Bd. 1, Pergamon Press, Oxford, 1967, S. 92; (b) R. Benassi, M.L. Schenetti, F. Taddei, P. Vivarelli und P. Dembeck, *J. Chem. Soc., Perkin Trans.*, (1974) 1338.
- 32 A. Schmidpeter und H. Brecht, Angew. Chem., 79 (1967) 946.
- 33 (a) M.M. Crutchfield, C.H. Dungan, J.H. Letcher, V. Mark und

J.R. van Wazer, in ³¹P-Nuclear Magnetic Resonance, Bd. 5, Interscience Publishers, New York, 1967, S. 227; (b) G.A. Gray, J. Am. Chem. Soc., 95 (1973) 7736.

34 Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-56854, der Autoren und des Zeitschriftenzitats angefordert werden.